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Guidance Concept for a Mars Ascent Vehicle First Stage

Eric M. Queen

NASA Langley Research Center

Hampton, VA 23681-2199

Abstract

This paper presents a guidance concept

for use on the first stage of a candidate Mars

Ascent Vehicle (MAV). The guidance is based

on a calculus of variations approach similar to

that used for the final phase of the Apollo

Earth return guidance. A three degree-of-

freedom (3DOF) Monte Carlo simulation is

used to evaluate performance and robustness

of the algorithm.
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1 Nomenclature

Energy (rn2 /s 2)

Gravitational acceleration (m/s 2)

Hamiltonian

Angular Momentum (m2/s)

Altitude (m)

Lift (N)

Vehicle mass (kg)

Planetary radius (m)

Radius from planet center (m)

Thrust (N)

Time (s)

Velocity (m/s)

Angle of attack (Thrust Angle)(deg)

Out-of-plane thrust angle (deg)

Flight path angle (deg)

Variation

Partial Derivative

Costate

Gravitational parameter (ma/s 2)

Latitude ( deg)

T

¢
Dummy variable for time
Cost functional

Heading angle (deg)

BO Value at Burnout

a Value at Apoapsis

targ Target Value

2 Introduction

Although efforts are underway to con-

tinue improvements in reliability and sensi-

tivity of robotic planetary probes, they will

not, in the forseeable future, be able to

match the examination and analysis capabil-

ities available here on Earth. One solution

to this dilemna is to retrieve planetary sam-

ples for analysis here. This has been proposed

for samples from Mars starting with the 2003

launch opportunity.

One plan calls for a lander to be sent

to Mars to collect soil samples and launch

them into orbit around Mars. The samples

will remain in orbit until the orbiter and lan-

der launched in 2005 reach Mars. The 2005

lander will collect more samples and launch

them into Mars orbit, and the 2005 orbiter

will then rendezvous with both sets of sam-

ples and return them to Earth.

The Mars Ascent Vehicle (MAV) is sub-

ject to severe design constraints. In ad-

dition to the usual premiums on weight,

volume, and budget, the MAV must oper-
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Figure 1. MAV Configuration.
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ate somewhat autonomously after being sub-

jected, unattended, to a severe environment

for nearly a year. As a result of these and

other constraints, The MAV has unique chal-

lenges in its design, especially for guidance
and control.

Because of the long travel times, the

MAV will have solid-fuel motors. Figure 1

shows the general configuration considered in

this report.

The ascent trajectory from the Martian

surface begins with a high thrust phase that

lasts approximately 20 seconds. The MAV

then coasts for approximately 200 seconds,

at which time it repoints, spins up to 20 rpm,

separates the spent first stage and fires the

second stage. One half orbit later, the third

stage motor (which is mounted backwards to

the other stages) is fired to circularize the fi-

hal orbit. The second and third stages are not

guided, though the repointing maneuver may
be modified to account for an off-nominal first

stage burn/coast. This sequence is illustrated

in figure 2.

While the first stage motor is burning,

the vehicle is controlled by vanes in the rocket

exhaust. After first stage burnout, aerody-

namic surfaces are available to reorient the

vehicle, but because of the low density of

the Martian atmosphere, the ability to ad-

just the first stage trajectory is limited. Thus,

the objective of the first stage guidance is to

achieve the highest degree of accuracy in the

desired burnout conditions, subject to uncer-

tainties in the winds, atmospheric density, ve-

hicle/payload mass, and total impulse of the

motor. The short burn time requires that the

1/2 orbit coast

Stage 3
circularization burn

Figure 2. MAV Ascent Sequence.

first stage guidance be very fast and robust

to a rapidly changing plant.

The scheme employed for guidance dur-

ing the first stage uses an approach similar

to that used for the final phase of the Apollo

Entry Guidance [1, 2, 3]. Based on a nora-

inal trajectory, the sensitivities of the final

state (here the burnout state) to variations
in the current state are determined and used

to drive those variations to zero at the final

time.

The next section gives the derivation of

the feedback equations for both the in-plane

and out-of-plane components. Section 4 de-

scribes the implementation of the algorithm

in a numerical simulation and describes some

results of that implementation.

3 Theoretical

Development

The in-plane differential

dynamical equations for a rocket ascent are



asfollows. For altitude,

_t= V sin(7 ) (1)

where h is the altitude, V is the velocity, and

T is the flight path angle. The equation for

velocity is

1/- T cos(a) gsin(T) (2)
/rt

and the equation for flight path angle is

 sin o,( V2)_- ._v + R:Th g cos(T)(3)

The function to be maximized is the energy

at burnout, so the Hamiltonian is [4]"

H = khVsin(7 )+kv Tc°s'a' ( _ (4)
m

Tsin(a)
-kvgsin(7) + k_ mV

V 2 cos(T)
+A_(Re+ h) A_gcos(T)

and the costate equations are:

£h - OH
ah (5)

A_V2 cos(T)

(Re + h) 2

OH

OV

= --Ahsin(7) -- 2A_Vcos(7)
Re+h

+ ArT sin(a)
rrtg 2

(6)

OH

OT

= -AhVcos(T)+ gaycos(T)
A_V 2 sin(7 )

+ Re+h -A_gsin(7 )

(r)

From [1], assuming that the perturbation in

the control will be constant,

--AT(t)6x(t)
6a = As(t) (8)

where

As(t)= - fl'_AT(_)Of(r),

O_(r) arJt
(9)

or

_(t)- AvTsin(a) A_Tcos(a) (10)
m rrtg

The above equations (5), (6), (7), (10)

are integrated backwards from the final con-

dition using states from the nominal trajec-

tory. It is desired to match apoapsis to put

second stage burn at the right position. So,
let

¢=--(ra--rtarg) 2 (11)

The boundary conditions for the costates are:

. Oral

t=tBO UT [t=tBO

(12)

. Oral

t=tBo = _(ra --rtarg) O_ t=tBo

(13)

t=tBO " ova [av(t_o)= 0¢ = 2(_ - _) aT _=_o
(14)

From orbital mechanics:

VBorBoCOS(TBO ) = V_r_ (15)

and

V_ o # V: # (16)
2 rBO 2 r_

where the subscript 0 denotes quantities at

burnout and the subscript a denotes quanti-

ties at apoapsis. Define the energy and angu-
lar momentum

8- V_o , (17)
2 rBO



Solving,

H = VBorBocos(T8o ) (18)

r a =

rBOVBO COS7BO 7-I

Va = _ (19)

substitute eqn(19) into eqn(16) and solve

for ½:

Va = # 4- v/# 2 + 2gH 2
7-/ (20)

The higher velocity is the periapsis root.

The minus root is desired. Note: Energy will

be negative for an elliptic orbit. The velocity

at apoapsis will still be positive.

Va = # - v/#2 + 2gH2
H (21)

Substituting into eqn(19) and simplifying

,]__2

"a = (22)
# - v/#2 + 2gH 2

The boundary conditions on the costates are

then:

Ora 1 OH H OVa

oh E oh vy oh
(23)

OH
- VBO COS7BO (24)

Oh

Og

Oh

The VBo and 7BO

analogous, with

-
r_o

derivatives are exactly

Ora 1 OH H OVa

ov E ov vy ov
(26)

OH

OV - r Bo COS7BO (27)

Og
- (28)

OV

Ora 1 OH H OVa

07 ½ 07 v2 07
(29)

OH
-- rBoVBosinTBo (30)

07

Og
-0 (31)

07

Note that the final state will never de-

pend on the final control so the "control

costate", As, will always have a final condi-

tion of 0. When this is used in equation (8) it

implies that a state perturbation at the final

time requires infinite control to be corrected

at the final time, i.e. instantaneously.

Also note that, for flight implementa-

tion, very little of this process occurs on-

board. The costates, A_, Av, etc, are de-

termined from a nominal trajectory prior to

flight. The costates are stored as tables or

polynomials and the control is then a simple
function of these stored values and the cur-

rent state.

The out-of-plane equation is

= L sin(0) + Tsin(/3)
cos(7) (32)

v
--- cos(@ cos(0) tan(u)

r

where u is the latitude,/3 is the out-of-plane

thrust angle (similar to sideslip angle), and
L is the lift force. It is assumed that the lift

force is negligible compared to the T sin(/3)

term and that the entire flight takes place

near enough to the equator that the last term

can be neglected. Writing _ as a finite differ-

ence and solving for sin(/3), results in

sin(/3) = (_b_ew_t t _boZd) mV cos(7)T (33)

where _b_ew is the commanded heading angle

and ¢oZd is the current heading angle. For this

implementation, the command was chosen as

a ramp in time that brings the nominal tra-

jectory to a 45 degree inclination at burnout.



4 Numerical Simulation

Results

The guidance algorithm described above

was implemented in a numerical 3DOF simu-

lation using the Program to Optimize Simu-

lated Trajectories (POST) program [5]. The

simulation was incorporated into a Monte

Carlo analysis with dispersions as listed in

Table 1.

Table 1. Monte Carlo Inputs

Variable Range Dist
Launch Altitude 0-2 km U

Launch Latitude ±0.1 deg G

Launch Longitude ±0.1 deg G

Launch Azimuth 41.74 ±1.8 deg G

Launch FPA 48.91 ±1.8 deg G

E-W Wind ±50 m/s U

N-S Wind 5-30 m/s U

Propellant Mass 38.418 kg ±0.3% G

Payload Mass 2.80 ±0.4 kg G
Thrust 5872.0 N ±4.0% G

Isp 279s ±1% G
CA +5% G

CN +5% G

The first column of Table 1 lists the

quantities that were dispersed within the lim-

its shown in the second column. The final

column denotes the type of random distri-

bution sampled; 'G' for Gaussian and 'U'

for uniform. Random atmosphere variations

were also included based on MarsGRAM [6].
The simulation was executed 2000 times with

these dispersions.

For this mission, because of the long (un-

controlled) coast phase and the need for even-

tual rendezvous by the orbiter, the apoapsis

and inclination are the most critical param-

eters. Figure 3 shows the final apoapsis and

inclination for 2000 cases. For all cases the

apoapsis is between 97 and 103 kin, and the

inclination is between 44.7 and 45.3 degrees.
Table 2 summarizes some statistics from

the Monte Carlo simulation.
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Figure 3. Burnout Conditions for 2000

cases.

Table 2. Monte Carlo Statistics

Variable Mean Max Min

Altitude 6.958 7.363 6.681 km

Inclination 45.01 45.27 44.73 deg

Apoapsis 100.22 102.92 97.43 km

Periapsis -3357 -3355 -3360 km

Tot. Impulse 105.1 106.3 104.0 kN*s

5 Conclusions

A guidance algorithm for the first stage

of a proposed Mars Ascent Vehicle has been

developed. This algorithm is based on a cal-

culus of variations approach, using influence

coemcients to drive the vehicle state to a de-

sired terminal state. The algorithm is de-

signed to provide good performance with very

little on-board computation. While the exact

configuration is subject to change, this algo-

rithm is potentially useful across a wide range

of applications.

The proposed guidance algorithm has



been implemented and tested in a 3DOF

Monte Carlo simulation. The results show

that the algorithm controls the vehicle to

relatively tight tolerances under reasonable

environmental dispersions, keeping the final

condition within about a quarter degree in

inclination and three kilometers apoapsis.
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